

The MRS MODEL OF RESILIENCE IN SITUATION

Pierre LE BOT

TWO RATIONALITIES ARE NECESSARY TO BE SAFE

Ultra safe systems: Humans role in safety

Follow strictly the procedure.
No deviations, no violations.
AND
Be able to the operate without or against the procedure

Example:

How to combine two opposite rationalities?

- In other terms: how to combine opposite rules without being only robust (by anticipation) or flexible (by adaptation)?
 - By alternating dynamically two phases:
 - Stable phase: following the rules
 - Reconfiguration phase: producing rules
 - By producing rules:
 - That combine the two rationalities
 - Adapted to the situation
 - In the situation
 - That are temporary
- How to be able to produce rules in that way?
 - With an organisation that have specific abilities and functions
 - → MODEL OF RESILIENCE IN SITUATION (MRS)

Control regulation

Control

Heteronomeous rules

- Prescription
- Training
- Safety culture

Autonomous regulation

Autonomy

- Autonomous rules
- Experience
- •Skils and routines

Two rationalities are necessary (from J.D. Reynaud)

Effective operating rules

Joint regulation

Effective rules:
-Collective
-Sensemaking
-Formal or unformal
-Contextual and temporary

EDF R&D

Safety by resilience

Alternate stability and rupture

Stabilization

- Following effective rules
- Robustness
- Attention

Rupture

- New rules
- Adaptation

Stabilization

- Following effective rules
- Robustness
- Attention

Learning from events to anticipate and develop autonomy

Following effective rules: keeping the course

ROBUSTNESS (AND ATTENTION)

Emergency Operating System

Following the effective rules Robustness and attention in stable phase

ADAPTATION

To adapt the rules: to change the course

In situation joint regulation

EXAMPLE

Crash: where is the failure?

An unsafe system

Traffic Jam on A

- Slowdown on A
- Slowdown on B until full stop
- Impossible to enter A from B

New rule

 A and B go alternatively

Context evolves

- Normal traffic on A again: speed increases, drivers stop the new rule
- B continues to go
- Crash
- Surveillance and validation failed

In situation regulation Organizational resources

Differed regulation,

learning organization

Model of Resilience in Situation: synthesis

MRS CONTRIBUTION

Safety needs ambiguity

- Two opposite rationalities: autonomy and control by anticipation
- Centralization and decentralization
- Stability and rupture
- Trust and doubt

...

Individual Human error

Collective failure

Link between MERMOS and MRS

Delta method

ROD

EDF R&D

Uses of the MRS

- Application to a radiotherapy case: "the Scottish case" (in "Resilience Engineering Perspectives", Volume 1, "Remaining Sensitive to the Possibility of Failure" edited by E. Hollnagel, C.P. Nemeth, S. Dekker)
- Research Study with PSI: EOS questionnaire (see next slides)
- MERMOS theoretical support:
 - Application for Halden international benchmark
 - Individual and collective error
 - CICAs = effective rules during stable phase
 - Failure is due to inadequate effective rules without reconfiguration
 - Extension to pre initiator applications human events
- Cooperation with ergonomists for control rooms evaluation

2009/2010: A Questionnaire to describe EOS (Emergency Operating Systems)

A study begun with the Paul Scherrer Institute Vinh Dang, Jonghyun Kim, Luca Podofillini

- Use of the Model of Resilience in Situation (MERMOS)
- To describe and compare several NPPs EOS from the Human Reliability point of view
 - Description
 - Event analyses
 - Observation on simulator
- Cooperation or partnerships of other organizations are needed
 - To get information
 - To discuss and share the result

Using the questionnaire: (preliminary) study about a Swiss EOS (1)

Using the questionnaire: (preliminary) study about a Swiss EOS (2)

Continuously applied step

- Fast scenario
- Multiple failures/goals/tasks
- Information overload
- Procedure transition
- Temporally insufficient staffing (high workload)
- Inexperienced operator (new staff)

Issues

- Ols the MRS applicable:
 - •For all organizations?
 - •All types of collectives?
 - •At the individual collective level?
- •Can it be relevant from Human Sciences approaches'point of view (ergonomy, Sociology, psychology ...)?

Thank you

pierre.le-bot@edf.fr

pierre@hrasociety.com
HRA Society
www.hrasociety.com

